Por meio de pesquisas realizadas desde 1990, na França e no Canadá, o CPR foi desenvolvido para substituir o concreto de alto desempenho (CAD) e, até mesmo, o aço, tornando-se o material de tecnologia de ponta, projetado especificamente para atender a exigências industriais e militares. Para termos uma ideia do que representa esta revolução tecno-lógica, basta dizer que o concreto convencional atinge até 60 MPa (600 kgf/cm2); o CAD atinge resistências entre 60 e 120 MPa (600 a 1.200 kgf/cm2), e o CPR está numa faixa de resistência à compressão entre 200 MPa e 800 MPa (entre 2.000 kgf/cm2 e 8.000 kgf/cm2).
Composto basicamente de pós – areia de quartzo, cimento comum, pó de quartzo e sílica ativa (microssílica) -, fibras de aço de pequenas dimensões, superplastificante e água, sendo os sólidos com tamanhos inferiores a 2 mm, os CPR são fabricados em condições semelhantes aos concretos convencionais, porém com baixíssima relação água/cimento – cerca de 0,15.
A microestrutura é a chave do desempenho do CPR, pois confere diminuta porosidade, permeabilidade no limiar da medição e, portanto, durabilidade excepcional. Comparado ao concreto clássico, observa-se uma completa mudança estrutural dos hidratos, que se traduz por uma estrutura contínua da fase aglomerante na escala microscópica.
No nível macroscópico, a matriz do CPR constitui um meio quase impermeável à água, tanto quanto à penetração de agentes agressivos, tais como os íons cloretos. Outra conseqüência direta é a ausência de poros capilares, garantindo a elevada resistência ao gelo/degelo e a quase inexistência de re-tração, tanto pela baixa relação água/cimento quanto pela porosidade diminuta, não havendo espaços para a ocorrência das variações volumétricas.
A utilização do CPR é bastante interessante na construção de estruturas espaciais leves, tabuleiros de pontes, vigas, colunas, passarelas, pré-fabricados de túneis ou placas de revestimento de fachadas, além de cilindros para laminação, projéteis, engrenagens, etc.
Exemplos dessa nova tecnologia são a passarela de Sherbrooke, no Canadá, com 56 m de vão, constituída de elementos pré-fabricados de apenas 15 cm de altura, e a revitalização de ponte rodo-viária, também no Canadá, em que o tabuleiro e pavimentação originais foram substituídos por laje com apenas 5 cm de espessura, reduzindo a carga permanente em quase 500 kgf/m2.
No âmbito estético, o CPR também é utilizado como revestimento de fachadas. Painéis planos ou curvos de vários metros de comprimento, compostos de placas de apenas 10 mm a 15 mm de espessura, recebem somente um acabamento superficial e constituem uma solução inovadora aos sistemas atuais de concreto. Com a utilização de armadura protendida, que permite obter estruturas muito delgadas graças ao pequeno cobrimento dos cabos (15 mm), as estruturas assemelham-se, arquitetonicamente, às estruturas de aço.
As características do CPR, que o colocam entre o concreto e o aço, obrigam os projetistas a repensar as estruturas e as metodologias de cálculo para possibilitar o melhor aproveitamento do material, já que as qualidades mecânicas do CPR permitem realizar estruturas ou peças nunca imaginadas, oferecendo grande liberdade para a definição de geometrias. Dentro das estruturas construídas com CPR, as armaduras passivas – símbolo da era do concreto armado – não são empregadas, sendo totalmente substituídas por fibras de aço de pequenas dimensões.
O material, por sua resistência à tração intrínseca e por sua grande ductilidade, resiste aos esforços de cisalhamento ou de tração, sendo os esforços principais de tração reduzidos com o uso da protensão. A sinergia desses dois sistemas complementares permite reduzir os espaçamentos, diminuir os escoramentos e reforços das fôrmas e apresentar as estruturas com formas que se aproximam das construções em perfis metálicos.
O concreto de pós reativos, uma nova tecnologia na área de concretos de altíssima resistência e já presente em algumas construções nos Estados Unidos, Canadá, Europa e Ásia, logo será utilizado no Brasil. A fabricação do CPR é realizada em centrais dosadoras tradicionais, como as existentes atualmente. O uso de pós secos conduz à estocagem em silos, contêineres ou sacos, e a pré-mistura seca permite pré-dimensionar o número de embalagens ou silos e dosadores.
Mas algumas modificações no processo, principalmente quanto ao tempo de mistura mínima aceitável, são indispensáveis para obter o CPR de qualidade constante. A água deve ser dosada com grande precisão para obedecer estritamente à baixa relação água/cimento, determinando a manutenção da reologia do concreto fresco (características físicas no estado plástico).
A ausência de agregados graúdos – que no concreto convencional auxilia a dispersão do cimento e outros finos – é substituída pelo uso de misturador forçado, um importante dispersador de pós. Já a produção do CPR em caminhões-betoneiras, embora perfeitamente possível, requer um tempo de rotação (mistura) mais elevado, ou a pré-mistura do material seco. O ciclo de mistura do CPR obedece à seguinte ordem: homogeneização do material seco; fluidificação da pasta pela adição dos aditivos e da água de hidratação, adição das fibras após homogeneização da pasta fluida. A dispersão das fibras é simplificada pela utilização de dosa-dores vibratórios ou, também, de sua mistura como material seco.
A reologia do CPR fresco depende da relação água/cimento, que pode variar entre 0,10 e 0,22, e da natureza dos pós utilizados. O CPR se assemelha a um gel, nas relações água/cimento baixas, e a um fluido, nos teores de água mais elevados. O controle de plasticidade é realizado em laboratório, por meio de ensaios de espalhamento, e no campo, pelo acompanhamento da dosagem do material.
Todo esse processo já passou por fases experimentais nos EUA e Europa desde 1990, quando mais de 10 mil ensaios de CPR permitiram consagrar suas diversas propriedades e compreender os complexos mecanismos que governam sua formação. O CPR já está sendo utilizado, com bastante eficácia, em obras de distribuição de águas, no tratamento de rejeitos, na exploração mineral, em equipamentos hidráulicos, em obras públicas e em indústrias de vários segmentos. Na indústria mecânica e química, existe uma grande versatilidade no emprego do CPR, sobretudo porque o produto pode ser utilizado para substituição de peças de aço – como é o caso de matrizes para estamparia e forjaria.
Devido às suas características de reduzida permeabilidade, este material está sendo usado para a confecção de contenedores de alta integridade – caixas destinadas a armazenamento de rejeitos radioativos (baixa permeabilidade à radio-atividade e longa durabilidade quanto à emissão) – desenvolvidos em parceria com agências de controle ambiental. A Monobeton Soluções Tecnológicas está realizando estudos iniciais para a introdução deste novo produto no setor de construção civil, mais especificamente, em construções industriais.
Fonte: Téchne Pini
Consulte a Axial sobre projetos para instalações elétricas e tenha total segurança contra descarga elétrica…
A iluminação certa tem o poder de transformar completamente o clima, e o visual, dos…
Projetamos e realizamos terraplenagem de acordo com a necessidade para sua obra. Consulte-nos clicando aqui.…
Tire seu imóvel da clandestinidade, entre em contato com a Axial e solicite um orçamento.…
Conhecer os tipos de telhas disponíveis no mercado é importante para especificar, projetar e executar…
Veja os principais elementos de um projeto de impermeabilização de baldrames em um edifício sem…